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Abstract. New simulations involving up to nearly lo9 sites for square lattice bootstrap 
percolation give a percolation threshold compatible with unity. In this model sites in a 
square lattice are initially occupied randomly, and then are removed if they have less than 
three occupied neighbours. The results are compared with those of similar models, such 
as that studied by Frobose, and the earlier bootstrap and diffusion percolation models, in 
two, three and four dimensions, of Adler and Aharony. In the latter models, the effective 
threshold approaches its asymptotic limit (one or zero) as ( A / h  for samples of size 
Ld, in agreement with theoretical predictions. The coefficient A decreases monotonically 
with the parameters which facilitate the removal (addition) of sites. 

In bootstrap percolation (BP) [l] one starts with a random distribution of occupied 
(with probability p )  sites and then culls all those sites which do not fulfil a certain 
condition. For example, on a hypercubic d-dimensional lattice with 2d nearest neigh- 
bours we may remove all those sites which do not have at least m = 2d - 1 occupied 
neighbours. This irreversible removal of sites is continued until either the whole lattice 

'has become empty, or until a stable configuration, where no more sites can be removed, 
is reached. There are several variants of this model, and numerous independent routes 
to its discovery. A summary of early work prior to 1986 is given by Adler and Aharony 
[2,3], who classified the different variants of the model according to the types of 
percolation transition that occur. Adler and Aharony give exact results and bounds 
for the thresholds and present a mapping from bootstrap percolation, with concentra- 
tion p,  to diffusion percolation (DP), with concentration 1 - p ,  models. In the latter, 
sites become occupied if a certain configuration of neighbouring sites is already 
occupied. The DP model that is equivalent to the specific case of bootstrap percolation 
with m = 2d - 1 (which is referred to as BP throughout this letter) is called a 2n DP in 
[2] and [3] (i.e. any two neighbours). This is the case where a site becomes occupied 
if any two of its nearest neighbours are occupied. Another DP model (called s2n DP), 
is one where a site becomes occupied if two of its neighbours that are second neighbours 
of each other, are occupied. The 02n DP model describes the case where a site becomes 
occupied if two of its neighbours that are opposite to each other are occupied. The 
occupation processes terminate when no more sites can be added. (For ease of 
comparison, unless specific mention of DP is made, we translate all general statements 
and numerical results below this point into the bootstrap representation of removing 
occupied sites; hence we consider thresholds near unity.) 
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The early bootstrap work was motivated by problems in the study of magnetic 
alloys [l]. Diffusion percolation was developed to model crack development in rocks 
weakened by fluid flow [2,3]. Bootstrap models have also been applied to the study 
of orientational order in ortho-para hydrogen mixtures [4], and to the dynamics of 
the glass transition [5,6]. Lenormand and Zarcone [7] developed a bond percolation 
model for flow in porous media, which can be related to BP/DP models. 

For BP on a finite lattice the stable configuration is a single spanning cluster of 
occupied sites and vacant rectangular holes. According to the ‘void instability’ argu- 
ment of Straley, cited in [ 13 and some simulations [5] we expect a threshold concentra- 
tion p c  of unity in an infinite system, i.e. even a minute concentration 1 - p  of holes 
leads in a sufficiently large lattice to a totally empty lattice. For DP the threshold 
should be zero [2,3], for those cases with ‘cluster instabilities’. 

The expected threshold pc of unity (zero) is an exact result [ l ,  7,8]. We expect 
p c = O  for s2n DP. Ertel et a1 [6], found a unit threshold in their diffusion model. 
However [2], p c > O  for 02n DP, and p c <  1.0 for the models studied in [4], and for 
m = 4 bootstrap percolation on the simple cubic lattice [ 11. Lenormand and Zarcone 
[7] suggested that for their two-dimensional model, l -p,  approaches zero only as 
A/ln L in an L x  L lattice. For their simulations A was not small, and therefore they 
suggested that the approach of the threshold to unity [7] will be observable only for 
experimentally irrelevant large lattice sizes L. Nakanishi and Takano [ 51 empirically 
fitted their BP data to a logarithmic law, showing that the effect can be observed in 
experimentally accessible systems. Very recently, Aizenman and Lebowitz [9] bypassed 
most of the above studies and independently proposed the d-dimensional logarithmic 
law that 1 - p c  approaches zero only as (A/ln L)d-’  in an Ld lattice. They were able 
to obtain bounds on the prefactor A. 

In order to clarify the relationship between system size, model details and the 
prefactor we have simulated BP for larger samples (up to L = 28 800) than previously 
considered. We reanalysed existing data for a variety of other BP and DP models [3], 
as well as our new results, to determine whether they are compatible with this logarith- 
mic law and, if so, what the prefactor is. In particular we looked for systematic trends 
in the thresholds and prefactors of the related models. This is with the hope of 
explaining the recent results of Frobose [ 101 who found p c  up to 0.924 for a different 
bootstrap percolation problem on lattices of up to L = 20 032. Using a linear fit for p c  
against l / ln  L he was unable to see a convergence of p c  to unity even for very large 
lattices, despite explicit exact predictions that this should also be true [6]. As we show, 
A is sufficiently small for BP and s2n DP that we were able to observe the expected 
behaviour even for relatively small samples in two, three and four dimensions. This 
is the first time that this behaviour has been seen for any system except 2~ BP [5]. 

Our new simulations for the BP case on the square lattice ( 2 ~ )  were done using 
several hours of Cray XMP/416, with one site per bit logical operations [6,11] and 
about 700 updates per microsecond and processor. Smaller lattices had been run [3] 
with simpler techniques on an IBM 3090. For the largest lattice, L = 28 800, we made 
consecutive runs with decreasing p but using the same random numbers, until the 
system no longer settled into a stable configuration of rectangular holes. For smaller 
L, many such series of simulations were repeated. 

We plot our new BP results in figure 1, together with data from [3]. The statistical 
error bars are of the order of the symbol size in figure 1. Assuming a linear variation 
of the effective thresholds p,(L)  with l/ln L we extrapolate pc to 0.998*0.004 for 
infinite L, consistent with unity, for ZD, BP. Figure 1 also contains data from [3] for 
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Figure 1. Graph of (1 -pc)l’(d-l) as a function of l / ln L for several models. The coefficient 
A is the slope of this graph. The data are indicated by the symbols 0, + and W for BP in 
two, three and four dimensions, respectively, and by A for s2n DP in two dimensions. The 
symbol V indicates the asymptotic result of L = a3 and pc  = 1.0. 

those models where void instabilities can be expected: s2n DP in ZD and BP on the 
cubic and d = 4 hypercubic lattices. These other models give similar p c  estimates, all 
of which are consistent with unity. Assuming p,(co) = 1, our data are consistent with 

( l -p , (L))”‘d-”=h/ lnL+. .  . .  
Our estimates of A are given in table 1. We note that we were unable to fit (1) to the 
data from the cases where no void instabilities are expected, like the simple cubic 
lattice if sites with less than four neighbours are removed. 

We now compare the various models systematically. The Frobose [lo] model can 
be classified as a c3n DP model. As in s2n DP two neighbours on the same side must 
be occupied; but in addition the corner site between these two neighbours must also 
be occupied for the considered site to become occupied. This ‘corner-three-neighbours’ 
model c3n involving nearest and next-nearest neighbours is thus the most difficult of 

Table 1. Bounds and estimates for A. 

Dimension Model Lower bound Estimate Upper bound 
~ ~ ~ ~~~~~~ 

2 B Pa 0.120 0.245 f 0.015 3.29 
2 BPb 0.120 0.27 3.29 
2 S2n DPc 0.480 0.47 & 0.02 3.29 
3 B P‘ 0.271 0.36 * 0.01 6.93 
4 B P” 0.442 0.44 f 0.02 12.63 

a [3] and new data. 
[51. 

c ~31. 
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the three models to occupy. It is easy to see that the a2n model is occupied most 
easily, followed by s2n and then c3n. We expect (1) to be valid also for c3n. Thus 
pc(L)  should decrease and A should increase if we go from a2n to s2n and then to 
c3n. In figure 1 we have plotted 1 - p c ,  and we see that for a given L, 1 - p c  increases 
as we go from a2n to s2n. Specifically, we fit the results for s2n with (1) and 
A = 0.47 f 0.02 and find that c3n must have A > 0.8. Table 1 shows that A can be quite 
small; however, it is nearly doubled from a2n to s2n and thus it might be doubled 
again if we go from s2n to c3n. Thus it is conceivable, as speculated by Frobose, that 
indeed at some very large L, perhaps beyond experimental relevance, a crossover to 
a logarithmic variation towards unity will happen also for the c3n case, since also then 
pc( L = CO) = 1 according to [6]. 

Other BP models, for which we also expect (1) to be valid, unfortunately do not 
necessarily fit into this scheme of inequalities. The bond bootstrap percolation model 
(b2n) of Lenormand and Zarcone [7] removes a site if two bonds at a 90 degree angle 
are empty; it then also removes the other two of the four bonds emanating from that 
site. In reversible in = 3 bootstrap percolation, a site is emptied if it has less than three 
occupied neighbours (as in a2n) but is occupied again if it has three or more occupied 
neighbours. While its percolation threshold must be smaller than that for a2n it is not 
clear how it relates to c3n and is thus not included in our figure ( p ,  is about 0.9 for 

Aizenman and Lebowitz [9] also obtained bounds on the coefficient A. Correcting 
an error in their equations (3.5) and (3.8), and evaluating their upper bounds, these 
are C,  S A  s C,, with 

L = 2112). 

SUPMZ)lZ 3 o> c - D--d / (d - l )  
1 -  

where g(z) = -z ln[l -exp(-zd-')], and l ( x )  is the Riemann zeta function. Note that 
our a2n model (or equivalently the BP models) correspond to D = 2 of [9] while our 
s2n model corresponds to D = 1. Table 1 also contains these bounds, and we note 
that our numerical values are quite close to the lower bounds. 

Equation (1) was first derived heuristically by Lenormand and Zarcone [7], for 2 ~ .  

Their argument can easily be generalised to higher dimensions: a cubic void of size 
n d  will stop growing with probability P - ( n )  - (1 - p ) 2 d n d - '  = 1 -2dpnd-', so the proba- 
bility to grow is P'(n) = 2dpnd-'. At the threshold, P'(n,) - 2da, with a = 0(1) ,  hence 
pc - an,(d-'). The probability P(n) to find an n d  void in an Ld network obeys 
P ( n  + 1) =c (2dpnd-')'P(n), hence P(n) = ( 2 d ~ ) ~ " ( n ! ) ~ ( ~ - " .  Writing LdP(n,) = b, with 
b = O( l) ,  and using Stirling's formula, we find 

h 
(3) In L = W + $ l n p , + A  

P c  

with A = ~ " ( ~ - ' ) ( d  - 1 -In 2da) and A =+ ln[b2/da-'(2.rr)-(d-')] .  The term $ In p , ,  as 
well as some constants, were missed in [7]. The term $ In p c  is the leading correction 
to the asymptotic equation (1). Since we also expect other corrections (e.g. of order 
l/n,, from the approximations for P(n, )>  and since the heuristic argument ignores 
corrections due to non-cubic voids, we feel that there is no justification to compare 
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data to values of the constant A. We note, however, that our critical values of A yield 
values of a of order unity. 

In summary, we have shown that ( 1 )  agrees beautifully with most BP and DP 

simulations, with coefficients which are consistent with heuristic arguments and rigorous 
bounds. We have also been able to order some models according to their difficulty 
(or ease) to form voids. Future theoretical work should try to evaluate the coefficients 
A exactly, and discuss the corrections to the leading behaviour. 
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Foundation and The Israel Academy of Sciences and Humanities. DS acknowledges 
the hospitality of Shmuel Fishman at the Technion. 
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